Double Longitudinal Spin Results and ∆G at PHENIX

Andrew Manion 2014/6/17 RHIC & AGS Users' Meeting

Outline

- Introduction
- Variety of A₁₁ Probes
- Global Analysis and ΔG Extraction
- Relative Luminosity Issues and Studies

Sum Rules

- Charge sum rule
 - assumes zero strangeness

$$Q_{proton} = 1 = \int_0^1 dx \left(\frac{2}{3} [u(x) - \bar{u}(x)] - \frac{1}{3} [d(x) - \bar{d}(x)] \right)$$

- Momentum sum rule
 - quark term from neutrino, antinetrino x-section measurements
 - <50% of momentum</p>
 - conclude that gluon contributes >50% of linear momentum

$$P_{proton} = P_{quark} + P_{gluon}$$

$$= \int_0^1 dx \ x \left([u(x) + \bar{u}(x)] + [d(x) + \bar{d}(x)] + [s(x) + \bar{s}(x)] \right) + \int_0^1 dx \ x g(x)$$

- Spin sum rule
 - o quark spin, gluon spin, OAM
 - DIS experiments find quark spin contribution only 25-35%

$$S_{proton} = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

$$\Delta G = \int_0^1 dx \ \Delta g(x), \quad \Delta \Sigma = \int_0^1 dx \ \left(\left[\Delta u(x) + \Delta \bar{u}(x) \right] + \left[\Delta d(x) + \Delta \bar{d}(x) \right] + \left[\Delta s(x) + \Delta \bar{s}(x) \right] \right)$$

Double Longitudinal Helicity Asymmetries

- In p+p scattering:
 - proton spin parallel (positive helicity) or antiparallel with its momentum vector:

 "Double Longitudinal Spin Asymmetry" then defined in terms of cross-sections:

$$A_{LL} = \frac{(\sigma^{++} + \sigma^{--}) - (\sigma^{+-} + \sigma^{-+})}{(\sigma^{++} + \sigma^{--}) + (\sigma^{+-} + \sigma^{-+})}$$

Can be similarly defined for fixed target experiments

Double Longitudinal Experiments: p+p

by checking denominator against

absolute x-section

The PHENIX Experiment at RHIC

Central arms

- \circ | η | < 0.375, $\Delta \phi$ = (π /2) x 2
- Tracking
 - Drift Chamber (Multi-Wire Proportional)
 - Pad Chambers
- Particle ID
 - Ring Imaging Cherenkov detector
 - Hadron Blind Detector (Gas Electron Multiplier) in '09 and '10
- EM Calorimetry
 - Two separate technologies for cross-check
 - Lead-Scintillator (PbSc)
 - sampling calorimeter
 - Lead-Glass (PbSc)
 - Cherenkov radiation calorimeter

Forward arms

- Tracking, Calorimetry, Muon Identification
- Minbias detectors
 - Zero Degree Calorimeter:
 - $|\Delta \eta| = > 6$, |z| = 18m
 - outside of bending field, sees neutrals
 - Beam-Beam Counter: $\Delta \eta = \pm (3.1 \text{ to } 3.9), |z| = 1.4 \text{m}$
 - reconstruct collision z-vertex online with ~5cm resolution

Final-state Probes for A_{LL}

- PHENIX is a versatile detector that allows A_{LL} measurements from a variety of complementary probes, including:
 - Single electrons from heavy flavor decays
 - dominated by gluon-gluon scattering
 - Electromagnetic clusters at forward rapidity
 - low Bjorken-*x* reach
 - Identified charged pions
 - \blacksquare sensitivity to sign of $\triangle G$
 - \circ π^0 pairs
 - improved *x* resolution through correlation
 - Neutral meson decays
 - statistically powerful probe

Probe: Heavy Flavor Decays

- Analysis of electrons (positrons) from Heavy Flavor Decays
- Dominated by gluon-gluon scattering resulting in a c-cbar pair

 Measure electron from decay of heavy flavor meson

$$\stackrel{\circ}{D^+}
ightarrow ar{K^0}
u_e e^+$$

- Improved BG rejection with Hadron Blind Detector in Run9
 - Cherenkov Radiator/GEM detector, 50 cm from IR
 - 6.2 cm² pads, circle from electron rad.
 slightly larger than 1 pad

Probe: Heavy Flavor Decays

 cross section measurement at upper limit of theory uncertainty

- gluon-gluon scattering:
 - sensitive to magnitude of Δg
 - negligible quark scattering contribution to asymmetry

resultant constraint:

$$\Delta G^{[0.01,0.08]}| < 0.85 (1\sigma), \mu = 1.4 \text{ GeV}/c^2$$

Probe: EM Clusters at Forward Rapidity

- Forward A_{LL} allows access to lower Bjorken-x
 - o for partonic reaction $1+2 \rightarrow 3+4$:

- Measurement of high statistics forward π^0 production
- Can extend PHENIX ΔG reach down to x ~ 0.002
 - \circ central arm π^0 down to x ~ 0.02

- Muon Piston (EM) Calorimeter
 - \circ 3.1 < |η| < 3.9, $\Delta \phi = 2\pi$
 - 4.8 cm² towers
 - $\circ \quad \pi^0 \to \gamma \gamma \text{ measurement limited}$ by merging at $p_{\scriptscriptstyle T} \stackrel{>}{_{\sim}} 2 \text{ GeV/c}$
 - analyze unidentified electromagnetic

Probe: EM Clusters at Forward Rapidity

 Preliminary result for cluster asymmetry at √s = 200 GeV

 Approximate cluster composition (from PYTHIA):

- Analysis of √s = 500 GeV datasets underway
- Readout electronics and trigger upgrade for Run12
 - purity of trigger improved by factor 4
- Expected statistical uncertainty on cluster A_{LL} from *existing* 500 GeV data expected to be ~1e⁻⁴

Probe: Charged Pions

- Identified π⁺, π⁻
 - Ring Imaging Cherenkov
 Detector

electrons: 0.017 GeV/c

muons: 3.5 GeV/c

■ pions: 4.7 GeV/c

- Main source of BG:
 - conversions before DC, look like high p_⊤ tracks
- Matching to HBD hit brings background to ~1% level
 - enables high pT cross section measurement

Probe: Charged Pions

Valence quark content:

$$\pi^+ = u\bar{d}$$
 $\pi^- = d\bar{u}$

 Plus large polarizations for u and d quarks:

Leads to ΔG sign sensitivity:

$$A_{LL}^{\pi^{+}} > A_{LL}^{\pi^{0}} > A_{LL}^{\pi^{-}} \Rightarrow \Delta G > 0$$

 $A_{LL}^{\pi^{+}} < A_{LL}^{\pi^{0}} < A_{LL}^{\pi^{-}} \Rightarrow \Delta G < 0$

- Result without HBD
 - Tight EMCal shower shape and other cuts alleviate BG problem

Probe: Charged Pions

- Inclusion of "charge neutralized" average of charged pion A_{LL}s in global analysis already possible
 - \circ lose sensitivity to sign of ΔG
- For full inclusion, fragmentation functions need to be updated to account for π^+ , π^- cross sections
 - global analyses needs to include high-p_T p+p cross section measurements

Probe: π⁰ Pairs

• π^0 - π^0 correlation gives better Bjorken-x determination:

• Analysis similar to single inclusive π^0 with an added dimension

$$A_{LL}^{\pi^0\pi^0} = \frac{N^{\pi^0\pi^0 + \pi^0BG + BGBG}}{N^{\pi^0\pi^0}} A_{LL}^{\pi^0\pi^0 + \pi^0BG + BGBG}$$
$$-\frac{N^{\pi^0BG}}{N^{\pi^0\pi^0}} A_{LL}^{\pi^0BG}$$

Probe: π⁰ Pairs

- Statistics limited
- First pair correlation A_{LL} measurement in PHENIX
- Possible extensions to
 - \circ π^0 + hadron
 - \circ central arm π^0 + forward cluster

Probe: Neutral Mesons

- Analyze through the γγ decay channel
 - PHENIX EMCal
 - Δ η ~ 0.01, Δ φ ~ 0.01 rad. segmentation
 - \circ B.R. 99%for π^0 , 39% for η
- Count signal region (red) and sideband region (blue) counts in ++ and +- helicity crossings:

$$A_{LL} = \frac{1}{P_B P_Y} \left(\frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}} \right), R \approx \frac{N_{BBC}^{++}}{N_{BBC}^{+-}}$$

- Relative Luminosity R is measured using minbias BBC scalars
 - largest systematic uncertainty from confidence that BBC sees zero asymmetry
- Interpolate combinatorial B.G. shape under peak to get background fraction "r"

$$A_{LL}^{\pi^0} = rac{A_{LL}^{signal} - rA_{LL}^{sides}}{(1-r)}$$

Advantage:

- identifiable mass peak
- choose cuts to minimize total uncertainty

Probe: Neutral Mesons

- q-g and g-g sub-processes at low p₊
- π^0 is the highest statistics PHENIX central arm probe
 - excellent constraint of ΔG
- η has larger decay opening angle, measurable to higher p_T
 - \circ π^0 decays merge ~10 GeV/c
 - η at ~ 40 GeV/c

- $\int s = 200$, 62.4 GeV PHENIX π^0 currently used in global analysis
- $\int s = 500 \text{ GeV}$ data under analysis
- inclusion of η requires more welldetermined fragmentation functions in global analysis

Probe: Neutral Mesons

- PHENIX Run9 Final results @ √s = 200 GeV
 arXiv:1402.6296
- refinement of cuts
- addition of 12-15 GeV/c pT bin for π^0
- doubles existing statistics

Systematic Uncertainties

Relative Luminosity

$$A_{LL} = rac{1}{P_B P_Y} \left(rac{N^{++} - R N^{+-}}{N^{++} + R N^{+-}}
ight)$$
, $R pprox rac{N_{BBC}^{++}}{N_{BBC}^{+-}}$

- \circ But is the BBC also sensitive to a physics A_{LL} ?
- Polarization measurement
 - Scale uncertainty, mostly from molecular hydrogen contamination of H-jet target and beam gas background
 - about 5% each
- Event overlap in the EMCal
 - \circ creates non-zero BG asymmetry that can depend on m_{vv}
 - controlled by cuts/careful binning of analysis

Determination of Syst. Uncert. on RL

 i.e., what if our relative luminosity detector DOES see some spin asymmetry?

- We use our minimum bias BBC (Beam Beam Counter) to measure R
- ...and compare it with a detector past the DX magnetic field
 - ZDC: Zero Degree Calorimeter, no charged particles
- We then assume the different physics they sample can't have the same asymmetry
 - so any non-zero asymm. in BBC should be apparent

$$A_{syst} = \frac{1}{P_B P_Y} \frac{\left(\frac{N_{ZDC}}{N_{BBC}}\right) - \left(\frac{N_{ZDC}}{N_{BBC}}\right)}{\left(\frac{N_{ZDC}}{N_{BBC}}\right)^{++} - \left(\frac{N_{ZDC}}{N_{BBC}}\right)^{+-}}$$

RL Syst. Throughout the Years at $\int s =$ 200 GeV

Run Year	$\frac{A_{LL}^R}{(10^{-3})}$	$\frac{\Delta A_{LL}^R(\text{stat+syst})}{(10^{-3})}$
2005	0.42	0.23
2006	0.49	0.25
2009	1.18	0.21

- Take maximum overlap in A_{LL}^R as correlated
 Take also uncertainty on A_{LL}^R as part of systematic
 - o 2009 total RL systematic uncertainty: 1.4e⁻³
- More on relative luminosity studies later in the talk

Comparison of π^0 Results to Global Analyses

- Combined PHENIX results alongside various global analyses
 - DSSV08: DIS + SIDIS + PHENIX + STAR (up to 2006)
 - \bullet constrains $\Delta G_{DSSV08}^{[0.05,0.2]} = 0.005_{-0.164}^{+0.129}$
 - GRSV: older DIS-only analysis
 - BB10: DIS-only analysis
 - NNPDF: DIS + prelim. STAR W A_I
 - uses neural networks instead of PDF functional form
 - LSS10: DIS+SIDIS analysis

Adding 2009 PHENIX Data, Effect of RL Systematic Uncert.

- Added 2009 PHENIX π^0 A₁₁ to the DSSV08 analysis
 - o along with updates of some prelim data to final
- DSSV08 global analysis did not include systematic uncertainties from the experiments
- Effect of shifting only PHENIX π^0 A_{LL} up or down by its total systematic uncertainty
 - dominated by systematic uncertainty on relative luminosity

Adding 2009 PHENIX Data, Effect of RL Systematic Uncert.

- Results of adding 2009 PHENIX π^0 A₁₁ to the DSSV08 analysis
 - o along with updates of some prelim data to final:

$$\Delta G^{[0.05,0.2]} = 0.06^{+0.11}_{-0.15}$$

vs. previously:

$$\Delta G_{DSSV08}^{[0.05,0.2]} = 0.005_{-0.164}^{+0.129}$$

(b)

Relative Luminosity Studies

Issue: Non-physical Asymmetries

- Non-physical asymmetries seen in longitudinal running:
 - 180° rotation of the experiment:

 $\epsilon_{DV} = 4.2 \pm 0.4 \times 10^{-4} \text{ in } 2009$

Parity violating asymmetry:

$$\epsilon_{180} = 25.5 \pm 0.4 \times 10^{-4} \text{ in } 2009$$

Can these asymmetries be explained?

Transverse Spin Asymmetry A_N

- No physics A_{LL}s we are familiar with in the ZDC or BBC
- But we do know of a transverse, phi-dependent, forward, single-spin asymmetry in NEUTRON PRODUCTION
 - transverse: Goes away for longitudinally polarized beams (local polarimetry)
 - phi-dependent: integrates out over all of phi
 - forward: backward asymmetry 0; polarization of other beam irrelevant
 - single-spin: scales as polarization P
 (compared to P² for double spin asymmetries like A₁₁)

+ Beam Geometry

- Beams traverse IRs in "zero" magnetic field region
 - straight paths
- Intersection geometry of beams can be decomposed into three components (x 2 planes)
 - Collinear Angle:Offset:Boost:
- Can measure all of these geometries with the Beam Position Monitors

= False Asymmetries?

Model for generation of various asymmetries

Predictions of Model

	€ _{++ to}	€ _{+- to -+}	€ _{++ to +-}	€ to -+
Collinear Angle	$= (P_B + P_Y) \delta$		= P _Υ δ	= -P _Y δ
Offsets	= 0	$= (P_B + P_Y) \epsilon$	= -P _Υ ε	= P _Υ ε
Boosts	= 0	$= (P_B + P_Y) \epsilon$	= -P _Υ ε	= P _Υ ε

- Key Feature: linear dependence on polarization
- δ, ε: acceptance modification factors, functions of angle, offset, or boost
- Important point: cross-check asymmetries which should be zero can be large under this effect!
 - failure to understand them would necessitate inclusion of additional systematic uncertainties

Run 12 Collinear Beam Angle Scan

- Predicted to have largest variation in the Run12 scan of collinear beam angles
- Slope about ½ of simulation prediction

- Should not have changed much during scan
 - its dependence is on boosts and offsets

Run 12 Collinear Beam Angle Scan

- Under model, these two yellow beam asymmetries should be equal and opposite
- Slopes equal and opposite, but not intercepts
- Same logic applies to blue beam asymmetries
- both yellow and blue asymmetries average to ~2e-3
 - consistent with rest of Run12

Remaining Unanswered Questions

- Is the case of offsets/boosts analogous?
- Is there also an A_{TT} ?
- These studies lead to the decision to reduce the residual transverse polarization component at PHENIX in 500 GeV running
 - there we see a smaller ZDC/BBC asymmetry
 - no chance to confirm if such a change would also reduce it in 200 GeV running

Asymmetry in Transverse Running

- Transversely polarized running
 - \circ much larger raw asymmetry, $A_{TT} \sim 5.17e-3$ if scaled by transverse pol.

- Plot of 200 GeV asymms vs. transverse pol. hints at dependence
- Also have 500 GeV results with lower transverse pol and lower ZDC/BBC asymm

Other Evidence of Beam Geometry Effects

- Accelerator physicists implemented automatic orbit correction for beams to help maintain polarization
- increase in average asymmetry/decrease in fluctuations coinciding with automatic orbit correction being turned OFF

Conclusions

- 2009 PHENIX and STAR final data already swiftly included in the DSSV global analysis
 - important to fully treat experimental systematic uncertainties to get the full picture (plus theoretical uncertainties)
 - Other measurements + 500 GeV datasets can also be included

- Investigations into RL systematic uncertainty must continue
 - o any further running w/ small transverse pol. component might help
 - we already understand much more than when we started, and have been able to avoid adding additional systematics
 - motivation for an A_{TT} measurement

Backup

Beam Position Monitors

Image current induced on two stainless steel striplines

Difference in current between sides a function of the beam deviation

perpendicular to the striplines

- Electrical to mechanical center calibrated with antenna
 - uncertainty about 50 microns
 - similar uncertainty from frequency response

Wall Current Monitors

- Measures the longitudinal profile of bunches in the ring
- Beam current passes through a magnetic toroid, induces voltage
 - o covers large frequency range 3 kHz to 6 GHz

WCM Bunch Width Asymmetries

- Can convolute wall current monitor data to produce a longitudinal bunch distribution
- Then calculate double spin-dependent deviation from average bunch width:

- Significant asymmetry in width within |z|<100cm
- Not observed in width within |z|<50cm
 - could explain some of remaining spin pattern separation in ratesafe ZDC/BBC asymmetries

Scale Uncertainties

- From Run6 result paper, showing effect of varying the theory scale uncertainties (factorization, fragmentation, normalization)
 - all set = p_T for the main analysis

